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-Abstract

The designof a spacecraft monitoring system based ona Neyman-Pearson detection
criterion is discussed. Ilach noncatastrophic state of the spacecraft is indicated by the
transmission of a specific signal to the ground station. Complete failure of the
spacecraftis indicated by the transmission of no signal. The set of signals chosento
represent the spacecraft states consists of a group of orthogonally spaced (in frequency)
cartiers each with unknown (random) phase. Receiver seructuresderived from
maximum-likelihood considerations arc proposed that provide suitable performance
inthe presence of frequency uncertainty (due to Doppler) and frequency rate
uncertainty (due to oscillator drift). Numerical results arc obtained from a
combinationof analysis anti simulation and indicate thetradcoffsamong the various
receiver structures between performance anti implementation complexity.
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1. Introduction

The design of an optimum carrier comununicationsystem for monitoring the
operational status (state) of an orbiting spacecraft is besthandled by applying the
principles of llJaxi~~~~llI~~-like’lil~ <~(>d detectionused in hypothesis testing problems. in
particular, each state of the spacecraft, c.g., spacecraft is fine, spacecraft has failed,
spacecraft needs immediate attention, ctc., is assigned a hypothesis and basal onan
appropt iately defined performance criterion, the receiver should be designed to
minimize the required power-to- noise ratio (or energy-to-noise ratio when fixing
obscrvationtime) needed to faithfully detect the hypothesis currently in effect.

in a hypothesis testing problem of the type described above, the notion of cost
is particularly appropriate. For example, the cost of an error in deciding that the
spacecraft is fine whenindeedit has failed is muchlarger than the cost of an errorin
deciding that it needs immediate help whenindeed it might only need help at a
later time. Also, the probabilities associated with the hypotheses that represent the
various spacecraft statesare,in general, quite uncqual, e.g., the probability of
complete spacecraft failure is significantly less than the probability that it might need
some particular form of help,

If a reasonable set of a priori hypothesis probabilities representing the
spacecraft states are available and if an appropriate cost matrix (the ijth clement of
which is the cost associated with an errorindeciding hypothesis I1y when inreality
H; is true) canbe assigned, thenthe best criterion to apply is the so-called minimum
risk or Bayescriterion whereinone attempts to minimize the risk, i.e., the average
(statistical) cost.

More oftenthan not, the a priori hypothesis probabilities are not known to
thereceiver and if they are, one can only estimate (approximate) their values from
reliability studics performed onthe spacecraft. YFurthermore, an appropriate cost
matrix might be difficult to construct anti indeed might be mission-dependent.
Inview of this, a so- called Neyman- Pearson criterion is often applied to such
hypothesis testing problems wherein one maximizes the probability of correct




detectionfor a given probability of false alarm without the needfor such a priori
probability or cost information. Most applications of this criterion foundin the
literature are for the two hypothesis case since there’, the notions of correct detection
andfalsce alarm arc well-definedinterms of the signal present versus signal absent
concept, While it is possible toextend this criterion to more than two hypotheses,
the literature is essentially devoid of this discussion. The primary rcason for this is
as follows. While the notion of false alarm can still be meaningfully defined, i.c.,
deciding on any of the other hypotheses corresponding to a signal presen t when indeed
signal is absent (spacecraftis dead), the notion of correct detection is somewhat
ambiguous since there are now many possible signal present hypotheses to decide
upon; hence thereare many correct detection probabilities -- one associated with
each of the signal present hypotheses.

Regardless of whether a Bayes or Neyman-Pearson criteria is selected, the
optimum receiver structure that results will be independent of the correlation
prop crlies of the signals which represent the various spacecraft states. (Of course,
the performance of the receiver will indeed depend on the signal correlation
propertics and thus a second considerationin the design of an optimum system
(transmitter/ receiver) is to choose that signalset which optimizes the system
performance for the givenstructuredetermined fromthe decision criteria applied.) On the
other hand, the’ specificimplementation of the optimum receiver structure depends
heavily onthe amount of information knownaboutthe parameters that
characterize thereceived signals, e.g., their phase, carrier frequency, etc. YFor
example, if all signal parameters (e. g., carrier phase, frequency, etc. ) are known, then
the optimum receiver takes the form of some type of coherentreceiver which may
or may not include a priori probability and cost information depending on the
decision criterion adopted. At the other extreme, in the absence of any specific
knowledge about the signal parameters, c.g., the carrier phase is assumed to be
uniformly distributed inthe interval (- z,7), thenthe optimum receiver is a form
of noncoherent receiver in that no attempt is made to estimate the carrier phase.
Finally, a compromise between totally known and totally unknown parameter
information, c.g., the carrier phasc is characterized by a known probability density
function, yiclds a form of partially-coherentreceiver.

in this paper, we discuss only the design of a spacecraft monitoring system
bascd ona Neyman-Pearson criterion. We begin with a brief discussion of this
criterion as applied to multiple (more than two) hypothesis testing. The resulting

'In the spacecraft monitoring problem, one of the hypotheses (corresponding to complete
spacecraft failure) still corresponds to signal absent; however, the presence of several different
spacecraft states necessitates several different signal present hypotheses cach characterized by its

own unique signal.



test shall then form the basis of many of the receiver structures that follow.

2. A Neyman-Pearson Test for M Hypotheses
Consider a multiple hypothesis test in which the received signal r(7) is characterized

as follows:

"y {(1(1), HO_ ) "

s, (1) 4n(); H,i=12,..., M- 1

where a(r) denotes the additive channel Gaussian noise with single-sided power
spectral density Ny w/1 1z, and s.(1), i = 12... M - 1 denotes the signals assigned to
the noncatastrophic (other than complete failure) spacecraft states. Assuming that
the noise only condition (null hypothesis #/,)is indecedtrue then deciding in favor
of s, (1) 4n(t) (hypothesis #,,i:1,2,. ..M -1) resultsin a false alarm. Since all of
these false alarm conditions come about from the same conditional hypothesis

(namely, /1)), it is logical to define the false alarm probability 7, by
M-1

Pos Y br{ini} (2)
(‘.haractcrizi;lé r() in terms of a vector observable r corresponding to the coefficients
in its Karhunen-1.oceve expansion (a special case of which could be the sampling
expansion) anddenoting by R, i= 0, 1... M - 1 the set of disjoint regionsin r-space
corresponding to choosing in favor of //,i:1,2,..., M- 1, then(2) can be expressed
as

M-1

S .27'[" p(ri, )dr =1~ jRD p(r]t, )dr (3)
where /)(l‘lllo)is the conditional probability density function (pdf)of the vector
observable r giventhe null hypothesis /7.

Assuming that 7/, is indecd true, then deciding in favor of s,(1)+ n(r) results
in a correct decision. We denote the probability of this event by

Poc= Pe{asin Y= [ p(sli, Jar, i:1,2,..., M- 1 (4)
In a two-hypothesis problem, i.c., M :2, where there is only one correct detection

probability, namely, 7, = }’r{lll|lll}£' P, the Neyman-DPcarson test is derived from
the criterion of maximizing P, subject to a constraint on #,,. Note that this is
meaningful and can be achieved independent of the knowledge of the a priori
probabilities of /1,and /J;. Whilcinthe M hypothesis problem it is still
mcaningf{ulto constrain false alarm probability, the presence of a setof M - 1 correct
detection probabilities as in(4) presents many possibilities for the maximization part
of the criterion. What one truly would like to do inthe M -hypothesis case is to
maximize the average correct detection probability (or equivalently minimize the
average missed detection probability) subjectto a constraint on 7,,.in order to




accomplish this one needs knowledge of the a priori probabilities of the M- 1 signal
hypotheses (to allow computation of the average correct detection probability) which
is contrary to the basic tenet of the Neyman-Pearson philosophy, namely, to specify a
test that is independent of this knowledge. To arrive at a test that is simple and
implementable, we shall choose to maximize the sum of the correct detection
probabilitics of (4) which is tantamount to maximizing the average correct detection
probability assuming equal a priori probabilities for the M-1 signal hypotheses. Then
setting M=2 will result in the well-known two-hypothesis Neyman-Iecarson test as
mentioned above.

The above criterion can be formulated mathematically using the concept of
LaGrange multipliers. For notational simplicity let p,(r)= p{r|l]‘.}, i- 0,1,2,..,M-1.
Then, the Neyman Pearson test becomes:

Choose the M decision regions R, (= 0,1,2,...,M- 1 so as to minimize
M-1 M- M-1

7= 1- ;‘I’m AP, = 1- ‘2]4,[,\ p,(r)dr+ }t‘}_{J; po(r)dr
Mo ()
<13 [ (p(r)= Apy (1))l
=1
where A is a L.aGrange multiplier to bedetermined. Thus, for a given observation
r, we examine all the values of i for which p,(r) - Ape(r) > () and then choose that

value of i, say i" which yicelds the largest of these positive values of p,(r) -- Ape(r).
Then, r is assigned to the decision region N, i.e., based on observation of r, wc
decide in favor of hypothesis }/i.. Sincethe decision regionsare disjoint, then for

any particular value of r, the contribution totheintegral jk (p.(r)- Apo(r))dr comes

only from one of thetermsinthe summation oni, namely i*. in termsof a
likelihood ratio test, the above can be stated as:

If Pr) > A, then choose hypothesis /1. corresponding to ix = max"-p’(r)
Po(r) AG!
Otherwise (i.e., if 6"8)) s Aforalli=12,..,p 1 ), choose the hypothesis #/,,.

(6)

In (6), the notation “ max™' f(/)” means “the value of i that maximizes j’(i)”. The

L.aGrange multiplier A (which from the above test turns out to be the decision
threshold) is chosen to satisfy the given constraint on false alarm probability which
can bedetermined from

Fin=h = [yl 0
where py(r)is independent of any of the transmitted signals, s,(1),...i= 1,2,..., M - 1.
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signal present, but also decides on the most likely signal when indeed the latter is
true.  Returning now to the continuous time notation as originally introduced in
liq. (1), the decision rule of (6) becomes

: - o PO,
> A, then choose H: corresponding to i = max™' ( | )

Soplraoj,)

Aforalli= 1,2,...,M- 1, choose 11,.

!

(8)

For the two-hypothesis case (M :2), liq. (8) simplifies to
o Plroji)

[ A(r &
IEAG) p(rji,)

> A, then choose H,. If A(r(1)) < A, then choose #,

9

where A(r(n)) is referred to as the likeliliood ratio.

3.1 Average- and Maximum-likelihood Receivers Based on he M-llypothesis
Neyman Pearson Test

In [1], average- and maximume-likelihood receivers were deri 7ed and presented for a
varicty of scenarios corresponding to the amount of parameter information, e.g.,
carrier phase, carrier frequency, etc., available for the signal.  In all cases, the results
were obtained only for the two-hypothesis case and as such related to the test for the
presence or absence of a single signal modcled as a fixed (known) amplitude
sinusoid with known frequency and unknown phase over an AWGN channel.

As discussed in the introduction of this paper, the spacecraft monitoring problem
corresponds to an M-hypothesis (typically M-1 signals and one null hypothesis)

test and thus it is of interest to rexamine the structure and performance of the
receivers in [1] in light of the additional signal hypotheses.

The evaluation of the numerator of the likelihood ratio A(r()) for a signal
with unknown parameters requires that one first determine the pdf of the received
signal under hypothesis 1/, conditioned on the vector of unknown parameters and
then average over the joint pdf of these parameters. letting « denote this random
parameter vector (which as mentioned above would typically include carrier phase,
carrier frequency, and the possibly other frequency derivatives), then the likelihood
ratio is computed from
j p(r@f, o) pla)da
A(r()= st T ,

p(rnfi,)
This is referred to as the average-likelihood ratio (ALLR) approach and is optimum in
the context of the Neyman-Pearson criterion previously discussed. Ordinarily, the
unknown random paramelers are independent random variables and thus the joint

(lo)
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unknown random parameters are independent random variables and thus the joint
pdf p(a) becomes a product of the individual pdfs characterizing each parameter
and hence the multidimensional integral in (10) becomes a product of integrals.

An alternate approach is to compute the numerator of the likelihood
function by again {irst determining the pdf of the received signal under hypothesis
1, conditioned on the vector of unknown parameters, but then replacing the
random parameters with suitable estimates of these parameters rather than
averaging over their joint pdf. One such set of estimates is the maximum-
likelihood (M1.) estimates and leads to the maximum-likelihood ratio (MI.R) approach
which is mathematically characterized by

R /)(r(t)llll,&m)

Alr(ny= = 0

p(roli,)

where oy, 18 the M1, estimate of the parameter vector a. Note that under no
circumstances is f\(r(z)) ever cqualto A(r(1)) and except in some very specialized
cascs (he” ATR and the MI R philosophics do notresultinthe same likelihood-ratio
(I.R) test. One case where they doresultinthe same 1 Riest (as pointed outin [1])
occurs for a signal which is an unmodulated sinusoidal tone (carrier) all of whose
parameters are known except for its phase which is assumedto be uniformly
distributed in the interval (- n,n).

in a more general context, structures derived from replacing the unknown
parameters in the pdf of thereceived signal under hypothesis //, conditioned onthe
vector of unknown parameters with estimates of them are referred to as estimat -
correlator structures. Thereason for this is that the form of these structures
involves a correlation of the received signal plus noise, r(r), with a suitable estimate
of the transmitted signal followed by comparison with a threshold determined from
the specified false alarm probability. in fact, it was shownalmost three decades ago
by Kailath [2] that receiver structures derived from an Al.R test always have an
equivalent formulation (Icading to an equivalent likelihood ratio test)interms of
an estimator -correlator structure provided that the appropriate signal estimator is
used.? in this context, it was shownthatthe correct signal estimator to useinthe
estimator-correl ator structure is the minimummean-square estimator (MMSE) based
on observation of the received signal 1ap to the present time. Since the MMSE estimator of
the signal uptothe present time is not equal tothe signal estimate obtained using
MI. estimates of the signal parameters obtained from the full observation interval, it
is unlikely that the two will yield equivalent likelihood ratio tests. Equivalently, the
Al R (which is equivalent tothe estimator-correlator with the MMSE signs

(11)

?Note that Kailath refers to what we call an average-likelithood ratio test as a gencralized
likelihood ratio test.
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different performances. As mentioned above, only in very special cases will the
ALR and MI1L.R approaches result in equivalent LR tests. Thus, in most
circumstances, estimator-correlator receivers using the MI. parameter estimates to arrive at
the signal estimator, i.e., the MLR approach, will result in suboptimum performance relative
to the ALR approach.

3.1.17 AL.R and MI.R Structures
In generalizing the ALR and MILR two-hypothesis receivers to M hypothesis
structures, we observe from (8) that the optimum teststill involves comparison of a

likelihood ratio A,(r(1))# p(r()/1,)/ p(r(t)|11,) (which now depends on which signal
hypothesis is being considered) with a threshold. The specific structure of these
reccivers depends on the form of the M-1 signals representing the signal plus noise
hypotheses. in line with the signal form assumedin [1], namely, a fixed amplitude
sinusoid with cither unknown phase and known frequency or both unknown phase
and unknown frequency, we shall assume for the M-hypothesis casc a sct of M-1
sinusoids (at frequencies f ./ ,,..../,, ,) with thesame unknown parameters.
‘I’bus, theset of signals in (1) is mathematically modeled by

5.0 = N2Pcos(2nf4 0), i 1,2, M - 1 (12)
where P, f,, respectively denote the known signal power and radian carrier
frequency of theithsignal and 0 denotes the uknown carrier phase assumed to be
uniformly distributed intheinterval (- z,z).  Since the best performance with such
a signaling set is achieved whenthe signals are equal energy and orthogonal, we
shall make this further assumption here. Note, however, that the structure of the
optimum AlLRand MI.R receivers docsnot require this orthogonality constraint.
Without going into greatdetailwe briefly summarize heretheresults for the
specific cascstrcated in [1]. Thereader is referred to [ 1] for more detail on the two-
hypothesis casc.

a. Sinusoidal Carriers with Unknown Phase and Known Frequency - ALR, MLR

The optimum Al R or MI R receiver computes for cach of the M-1 transmitted
frequencies the envelope

. .
1= 12412, Lt [ N2 cosamf g dr, 1,2 [ ro2sin2af s ar,
=12, M1

(13)

The decision rule in both cases is:
If 1] >y for any i, choose hypothesis //, (or equivalently s,(s)) corresponding
to max 1]. Otherwise (I; <y for all i:=12,...,M -- 1) choose hypothesis 7/,

(corresponding to no signal sent).




In the MIR case, it is understood that the unknown carrier phase is to be replaced by
its M1, estimate for each of the conditional likelihood ratios so that the decision rule

is determined from a comparison of the set A,(r'(t)) : p(r(l)lll,.,OA‘.M,‘)/p(r(t)]ll(,),

i= 1,2,...M- 1 with a threshold. Note that the MI. phase estimate now depends on
the hypothesis ;. A receiver that implements the above decision rule is illustrated
in Fig. 1.

b. Sinusoidal Carriers with Unknown Phase and Unknown Frequency - ALR

Asm:m;\g a frequency uncertainty region of 4 /2 11z around cach of the possible
transmitted tones, then the optimum AR receiver computes for each of the M-1
transmitted fr('qucncicq the quantity?

, 2P ,

)l_,,jf“_ » 0( N, I(f)Jlf i=1,2,..,M- | (14)
where L(f) s defined analogous to (13) by

L DAY, LD [ ro2cos2afidr, LD [ re2 sin2agt di
(15)

The decision rule is:

If Y;>vy for any i, choose hypothesis /J, (or equivalent] y s,(¢)) corresponding

to max Y,. Otherwise (1( <y for all i =1,2,.,., M - 1) choose hypothesis /1,

(C()rr‘('sp(mding tono signal sent).
Since (14) is overly demanding to implement, one discretizes each of the M-1
frequency uncertainly intervals into G = B/77'= BT subintervals to each of which is
dissociated a candidate frequency /, ;,i=12,....M -1, j=0,1,..,G --1 located at its
center. Such a discretiza tion results in orthogonal envelope detector outputs. As
such, the integration over the continuous uncertainty regions in (14) is

approximate’d by a discrete (Riemann)sum and, hence, the approximate statistic to
be used in the decision rule is

L/( “/f( L)) ), i=1,2,..., M- 1 (16)

A recciver that |mplements the above decision rule is illustrated in Fig.2.

Agaln assuming disjoint frequency uncertainty regions of 4 /2 11z around each of

the possible transmitted tones, then the’ optimum MI R receiver computes for cach
of the M-1 transmitted frequencies the quantity

. Sinusoidal Carriers with Unknown Phase and Unknown Frequency - MIR

SWe further assume that the nominai carrier frequencies Of thetonesare chosen sufficiently far
apart so that the frequency uncertaintly bands around cach are nonoverlapping,
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Yoo max (), fu- BI2S[ <[4 B2 (17)

where L.(f) is defined in (15). The decision rule is the same as that following Eq. (15)
and results in a spectral maximum form of recciver. Again because of the excessive
demand placed on the implementation by the need 10 evaluate (1 7) over a
continuum of frequencies, we again quantize cach of the frequency uncertainty
regionsinto G = 37 subintervals, each with an associate candidate frequency
Ju, i=L2,...M-1, j= 0,1, .,G-1located at its center. As such, the frequency
continuous test statistic of (1 7) canbe approximated by the discrete form

Y = max LCf,) (18)

A receiver that implements the above decision rule is illustrated in Fig. 3.

3.1.2 Performance of the Al .R and MI.R Structures

The detection performance of the frequency discrete Al Rreceiver in Fig.2 cannot be
obtained in closed form due to its highly complex nonlinear structure. Despite its
complexity, however, it is important 10 obtain the performance of this receiver since
it serves as a benchmark against which the performance of any other simpler to
implement struct ures (including those derived from MI R theory) can be compared.
‘I’bus, to obtain this performance we shallresortto results obtained from computer
simulations. in constructing the simulation for the signal plus noise hypotheses, a
decision must be maderegarding the selection of the true received frequency of the
input signal. in making this selection it is important to understand that spacing the
frequencies f, ;,j = 0,1,2,.. .,G - 1 for each of the signal hypotheses /,,i= 1,2,.. .,h4 --1
by 1/7T guarantees independence of the noise components thatappear at the output
of cach the spectral estimate channels. 1Jowever, orthogonality of the signal
components of these same outputs depends on the true value of the received
frequency relative to thediscretized frequencies assumed for implementation of the
recciver. That s, if the true received frequency happens to fall on one of the f, s,
then a signal component will appcear only in the corresponding spectral estimate
channel, i.e., all other channels will contains noise only. On the other hand, if the
truereccived frequency falls somewhere between two of the f; ’s, thenwe have 10ss
of orthogonality in that a spillover of signalenergy occurs in the neighboring
spectral estimates. The worst-case spillover would occur whenthe true received
frequency is midway between two of the /, ’s. (If an FFT'implementation is used,
then the worst case degradation canbe ameliorated by zero padding to interpolate
between the frequency samples. ) in view of the above, we shall present both best
cascand worst case performance results corresponding, respectively, to selecting the
true received frequency for the simulation identical toone of the f; ;’s and midway
between two of the £, 's.

ci, §
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Figurc 4 is a plot of miss probability 7= 1- 7, versus P’/ N, in dB-11z for an
observationtime 7" = 1000 see, a frequency uncertainty regiond ii/2 =4 1000 | 1z
(thus 7 B7=7710°), a false alarm probability £ =2 10%, and M = 5 (four signal
plue noise states representing specific spacecraft conditions and one noise only state
representing spacecraft failure)." These values have beensuggested as being
typical of the spacecraft monitoring application. Also shownin this figurcare the
corresponding results for the M1.R receiver of Fig. 3 which can be obtained from a
straight tforward generalization of the analytical results in [11 tothe case M>2. We
observe from a comparison of the Al .R and MI.R results that the latter is inferior to
the former by a /Ny amountonthe order of 1 dB-11z for either the best or worst
casc situation. in each case, the difference between best and worst performance is
about 2 dB-11z.

3.1.4 1.ow SNR Approximation of the Al R Struclure

With reference toliq. (16), we observe that to implement the optimum Al .R
structure derived from the assumptions of unknown carrier phaseand unknown
carrier frequency (uncertainly about thce nominal carrier), one must build a receiver
containing G envelope’ detectors and Bessel function nonlincarities. Although
theoretically possible, the complexity of sucha receiver for the spacecraft monitoring
application where the frequency uncertainty interval, B, is on the order of 2 k} 1z
and the observation time interval, “f’, is onthe order of 1000 see, yielding

G :B8T=2 x 106 is simply too great. As such, weseck an alternate approach which
combines this large bank of noncoherent processors into perhaps a single
noncoherent processor thus greatly reducing the implementation burden.

One such approach is obtained by approximating the /,(x) Bessel function by
itssmall argument equivalent. in particular, for smallvaluesof x, we have
1,(x)=14 ().25X".  Of coursc onc could simply make this approximation for the Bessel
functionsin the discrete frequency form of the decision statistic as given by (16)
which would suggest the low SNR Al Rreceiver of Fig. 5 (also sce Fig. 7-11 of [4]).
While this approach is useful in computing the approximate detection performance
of the receiver (as we shallsce shortly), unfortunately it only reducesthe complexity
perchannel (by eliminating the need for the square root and Bessel function
nonlinearities) but does not reduce the complexity interms of the number of
parallel channels needed. On the other hand, making the above Bessel function
approximation inthe continuous frequency form of the decision statistic as given by
(14)together with (1 .5) results in

¥'hese paramelers arc typical of aspacecraft monitoring system currently under consideration by

the Jet Propulsion 1 .aboratory for future deep space missions.
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Substituting for 72(f)and 17(f) from (15) gives

o 2P cfarBi2er r ] . o
Y, = B Ng JA;A“/?L LI(Z)I(T)(.()S?]TfI cos2nftdrdt df
2P rivsi2cr o . . .
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2P et et L B2
= B+ »NS JO _[U r(t)r('r)(J‘/d_ 412 C08 2nf (1 - T)df)dt dt

Shifting the integration on f to the interval (- 8/2,8/2), and then performing this
integration, (20) evaluates to
Poer ot Ifsin[ﬂB(t— T)]
Yoo B -— r(r(r)cos2af (1- 1)-
‘ N JO JO (DriT)cos2nf.(t- 1) aB(r- 1)
’ Bsin[a8(t —1)]

P ;
= B4 — 1ycos2nf .t (T)cos2nf, 1 11 |dt
N JO r(r)ycos2nf,. (Jo r(t)cos2nf, 2Bt~ 1) G j 1)

drdr

1 ]:])g JOI r(r)sin 27zfc‘.z(_|: r(T)sin2nf. 1 !;Sl:[[:([:;_(l;)?)] (11}1[

For B>>1/7,i.c., large BT product, as is the case of interest here, we can interpret
theintegrals on Tas the output of a unit amplitude rectangular low pass filter of
bandwidth B excited by the 1 and Q demodulated (at frequency f,) input. Strictly
speaking this interpretation is only valid inthe limit as 7'-» «. Denoting these

filtered outputs by y_(r) and y,(r), we obtain a simple form for (21), namely,
Y, = BA »}\115 [J’:(r(t)cos2nfd1)yc(t)a’l 4 _[Ol (r(ysin2nf,1)y, (t)dt] (22)

which has the physical interpretation illustrated in Fig. 6a. Note that this
implementation has the advantage of replacing for cach hypothesis an entire bank
of G noncoherent processors with a single square-and-integrate processing. Since
the wideband noise at the inputs to the rectangular filtersin Fig. 6a can be separated
into aninband component (onc whose energy lies inthe interval (- 8/2,8/2)) and a
wide out-of -band component (one whose energy lies outside of (- 12/2,15/2)), then
for B>>1 /7, inso far as the T-secl&D outputs are concerned, the product of the
filter outputs and the wide! out-of-band components canbe ignored relative to the
productof thefilter outputs and the inband components. As such, another
approximate form of (21 ) is



7o~ . -]) ! ? 1 2
Y= B N? “U Y2 (t)d1 4 jo Y )m] (23)

which has theimplementation of Ng.()b. Itshould be noted that, for any finite 7,
(22) will always yicldbetter performance than(23); however, in the limit as 7 - >
the two become equivalent. Since both (22) and (23) arc approximations to the true
low SNR Al R statistic, (23) is the preferable onctouse. 1:urthermore, as we shall
soon sce,inso far as detection performance is concerned, the rectangular filters of
bandwidth Bin Fig. 6b are only consequential in determining the number of
independent samples (BT)contained in the observation time interval. That is, the
performance will not explicitly dependonB or 7' individually but rather on the
product G = BT.

The performance of the low SNR approximation tothe Al R illustrated in
Fig.5 (which also applies to the implementationsinltig. 6) can be approximately
computed by applying a Gaussian assumption to the Y,’s. in particular, using the
small argument approximationtothe/,(x) function in (16), we have that

(;“l l, . ) i )
Y, ;:L(l-l il (fm,,)}“oui, i£1,2,... M- 1 (24)
j=0 o

Assuming that the transmitted signal is a sinusoid with random phase and
frequency identically equalto one of the quantized frequencies of (24), thenthe
mean and variance of Z under signal plus noise hypothesis (//;) anti noisc only
hypothesis (//,) can be shown to be

I (!Nu (j
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rrg I

N ? 0]

2
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NO N()
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From the decision rule following Eq. (15), the false alarm probability is determined
from the probability that all M - 1Y/ sarc below the threshold yunderii,.
lquivalently, absorbing the constant G in (2.4) into the decision threshold and
noting that the Y’sarcindependent and for large G can be approximated as
Gaussian, then?,,is determined from

var{Z,.}i\ o} =
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. S M-
] 06

where ¥ £y~ G and Zlu ,o.,)” are determined from (25). Similarly, since under the
0 o

P Y
Praz 1= Pr{YY, Y, <ot} - 1 afe o

signal plus noise hypothesis only one of the ¥/’s contains the signal, then the
detection probability is given by
Py = Pr{Y, > vV Yo Y Y Y <Y

IR R M-1 -

- ? -
(Z"Zlu) 1 ["/'7
‘ ]-»mf(

-
= .- exps -

where, in addition to the above, 7|” ,0,|,, are determined from (25). Eliminating,

1}

M-2
(27)
e dz,

Hy

the normalized threshold between (26) and (27) and making use of the moments in
(25), the ROC for the low SNR ALR receiver is approximately (based on a Gaussian
model for the Y/’s) given by

Y
“h, Zi//) ! ™
° - [] Yy crchJ dY

6 o~ (. G )(y PTIN, ) [ 1 }‘”
,,,,,,,,,,,,,,, N , S
\/71\?/’1 /N ! G|"I C}\}{ (2] 1 /N(,—* G \/7(1 A 201 ¢

n.»“crrc“M (1 f }}

(28a)
For G >>PT/ N,and P, << 1(the cases of interest here), (28a) simplifies to
) M-2
P, = :/1— 7)&(‘y1#2/(];/i) Hl—i-crchJ dy,
A e (28b)

A 1
n=erfe! [» . )21’,. }
) { M-

Furthermore for the two hypothesis problem,ic., M =2, (28a) simplifies to

P, = —;crfc[\[zpyv/(;v -{G(crfc"(zl’m)» I\I/?/(/}V %R erfe’ (21’,A) i/;(N J
(29)
Fig. 7 is a plot of miss probability 7= 1- /’, as determined from (28) and (29) versus
)’/ /V,in dB-11z for the same parameters as in Fig.4. The performance curves for the
full-band receiver were obtained numerically from (28a) and the exact form of (29).
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For M = 2, these results were verified using a computer simulation and are also
illustrated in the figure.  Comparing Fig. 7 with the ALR results in Fig. 5, we
observe the huge penalty in performance paid for the simplicity of implementation
afforded by the low SNR approximation.

3.1.5 Al.Rand MIL.R Structures for Sinusoidal Carriers with Unknown Phase,
Irequency, and I'requency Rate

Assume now that inadditionto the uncertainty in phaseand frequency of the
transmitted sinusoidal carrier considered in Section 3.1.1, there also exists an
uncertainty infrequency rate corresponding to the presence of oscillator drift. If this
drift is modeled as a linear variation infrequency over the observation interval, i.c.,
a constant but unknown frequency rate uniformly distributed inthe interval 1572,
thenfollowing the Al R approach, it is straightforwardto show thatanalogous to
(14) the optimum recciver computes for each of the M-1 transmitted frequencies

the quantity

B2 1812 2\/1 .
Jl:/?-[/ B2 0( LA, f)J(IY(Iff i=1,2,...M-1 (30)
where
LU =BG DAL D,
l,c(f,f):{‘ J:."(I)\/?. cos[?.ﬂ(fl 1 17/"17)](11 (31)

LA LI rON2 sin2n(fi 4 i)
The decision rule is still the same as that following 1iq. (15). Since (30) is ¢ven more
overly demanding toimplement than was (14) because of the additional integration
on f,then once again we must resort to discretization of the frequency and
frequency rate uncertainty intervals resulting in the approximate decision variables

SIS ONIT
Y& }‘} 10( [5 “/,j,j i=1,2,..., M- 1 (32)

Jj=D1:0

where 12 BT? /2.5 An illustration of an Al .R receiver that employs this decision
statistic is illustrated inlig.8.

In the: presence of lincar frequency drift, the optimum MILR receiver would
compute for each of the M-1 transmitted frequenciesthe quantity

Y= max /(f, It~ BI12< F <L+ B/2, - B[2< [ <B/2, (33)
and then apply the decision rule following liq. (15). in discretized form, (33) would
become (analogous to (18))

Ihe value of F, i.c., the quantization of the f uncertainty, is determined from approximate
orthogonality considerations (sce Appendix C of [8]).



15
Y, max 1L /) &
1y

3.1.6.1.ow SNR Approximation of the ALR Stucture

As in Section 3.1.4, one canapproximate the zero order modified Bessel function in
(32) by the first twotermsin its power series. When this is done, thenusing (31) it is
straightforward to show that analogousto (21) one obtains

L PN
Bsin] M (7 -
r I}sin[rnlf(ti-r’c)] ‘jm[ 2 (I ¢ )J

. T 1
Y= BBA - | r(n)cos2af 4| | r(t)cos2nf, - : N A [
i Ng J(J ( ) l./‘c: JO ’( ) ) »fct 71[3(1- T) ![I} (t? . ,[7)
2
, B [ B ]I}sin[ﬂ; (17» 17)}
Y l S -7
4- ?J r(t)sin2nf 1 _[ r(t)sin2nf,1- sinfrbte- )] e A [
NZ o 0 ns(r- 1) By, 2
(e -17)
(35)

Unfortunately, (35) does not lend itself to an easy interpretation intermsof an
implementation. However, if (1}/2)7‘ < 13/2 (i.c., the maximum frequency change
duc to drift is within the initial baseband frequency uncertainty interval), then over
the observation interval the sin 17/ yterm involving 5 in (35) is much slower
varying than the sin x/xterm involving B and to a first order approximation the
former canbe treated as a constant with respectto the time duration of the latter. As
such, the’ implementations of Fig. 6a, bare still appropriate for the low SNR
approximation to the Al Rinthe presence of linear frequency drift. Also invoking
the Gaussian approximation to the statistics of (35), thento a first order
approximation, the detection performance is still given by (28) and (29).

3.1,7. Improved Simple Receiver Structures for Signals with Bounded Frequency
Drift

While the square-and-integrate receivers of Fig. 6 have the advantage that their
simple structure and performance> are approximately invariant to the presence of
frequency drift, as previously mentioned the’y pay a large penalty in performance
when compared to the true optimum Al R schemes.® in an effort to improve
upon this situation, we shall suggest a modification of the simple square-and-

OWhilc it is truc that the performances of the optimum Al Rand M LR structures derivedin Sect.
3.1.1 (b), (c) and illustrate in Figs.2,3 willdegrade inthe presence of drift approaching that of
the simple reccivers Of Fig. 6, this will belesstrue for the optimum Al R and M 1R structures

derivedinthe presence of drift as described by e decision statistics in Sect. 3.1.6.
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integrate recciver of Fig. 6b by exploiling the fact that, in the case of interest here,
(1}/2)’1'<< B/?2, ie., thedriftoverthe observation interval is only a small fraction of
the total initial frequency uncertainty band. in particular, typical spacecraft
oscillators have a maximum one-sided drift rate onthe orderof 25 Iz in 1000
seconds and thus for an observation time of ‘f' = 1000 scc, (£/2)7 = 25 11z which is
quite small comparedto the assumed baseband frequency uncertainty interval of
B/2 - 1000117,

Consider dividing the total baseband frequency uncertainty band B/211z into
K subbands of width (/2)1 117 each, i.c.,, K= (8/2)/(13/2)1" which for our ongoing
example yields K = 1000/25 = 40. A motivation for doing this can be obtained by
examining the behavior of the Al R structure of Fig.2 whenthe input frequency
drifts and is discussed following the end of this paragraph. The received signal in
cach of these subbands” is squared-and- integrated in the manner of Iig. 6b. The
maximum of these squared-and-integrated values (energies) is selected and
compared to a threshold sct by the requirement on false’ alarm probability. A
receiverimplementationbased on M channels of the type described above (sce Fig,.
9) will be referred to herein as a subband squaring receiver as contrasted with a full
band squaring receiver which wouldincorporate M channels of the type illustrated in
Iig. Gb.

The construction of the subband squaring receiver can be motivated by
reexamining, the basic building block of the Al .R receiver inF¥ig. 2, namely, the

envelope detector. in particular, rewriting the squared envelope of theijth detector
as

"

I?(fm.'j.) - UOI r(D~2 cos2nf“.'jt dt]2 4 U:.r(l)\h sin2nf, 1 dt]?

2

1

Uul r(N2e 7 (11‘7 : Uu r()p(2e ¥ di

where p(1) is a unitamplitude rectangular pulscinthe interval () <¢<7 shows that
1,7(.)"”‘} ) can be interpreted as the energy component of the windowed signal r(1)p(1)
at frequency /., over an effective bandwidth of 1 /7' Hz (the result of frequency

domain spreading duectothefinite duration of the time window p(t).) Thus, each
cnvelope detector in Fig. 2 measures the energyin a narrow frequency band within
the uncertainty band of interest. Since the center frequencies of adjacent envelope
detector-s arc separated by 1 /7 11z, it is clear that the ith detector in Fig. 2 consis{s of

“From an implementation point Of view, the received signal IS passed through a bank of disjoint
subband bandpass filters cach of which can alternately be implemented as an 1-Q demodulation
with the carrier frequency a the center of the subband followed by a bascband rectangular filter of

width (1}/2,)7':1;/21<.
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abank of narrowband filters that completely cover the frequency uncertainty region
associated with the ithsignal. IFora square window function, the frequency
response of cach filter is of the form sinx/x, implying orthogonal outputs when
the center frequencies are separated by 1 /7 1 1. “Ubus, the filter bank generates the
maximum number of independent samples, 87, consistent with a bandwidth 11117,
and integration time 7 scc.

The MLLR algorithm selects thelargest energy component within theith filter
bank as thetest statistic Y, as illustrated inkig.3. Forthe Al R algorithm, however,
the energy components collecled at cach frequency are further processed by taking
the squarcroot, applying a scale factor, and computing the Bessel function /,(x) of
the resulting scaled envelope. Following this, the results are summed to obtain the
test statistic Y,. Although the MILR structure is suboptimum, its performance is only
slightly worse’ than that of the Al .Ralgorithm for this application. Boththe Al R
and MIL.R structures arc predicated on the assumption that the signal remains
constant in frequency, which further implies that it remains within the passband of
the same filter (channel) through the entire observation interval, ensuring the
greatest possible SNR at the output of that filter. Equivalently, interms of a
changing input frequency, a maximum signal drift of less than 1 /71 1z over the T -
scc observation is implied.

If the maximum frequency drift exceeds 1 /7 Hz during the obscrvation, then
the signal moves from one filter to the next, possibly spanning a large number of
filters (channels) overthe observation interval. In that case, nosingle filter contains
all of the signal energy, which is now distributed among many adjacent filters.

1 lowever, if the starting frequency and maximum drift rate were known, then the
signal energy could still be recoveredby combining (summing) the outputs of all
fillers spanned by the signal. Since the actual starting frequency is not known, this
suggests using a filter bank with filter bandwidths large enoughto accommodate the
drifting signal. Thus, analogoustothe Al .R approach, we partition the uncertainty
region into K =87/ N(N an integer chosen inaccordance withthe maximum drift
rate) filters cach of band width N /1’ 11z, instead of 57 filters of bandwidth 1/7 117 as
was done for the discrete version of the AlJ< with no frequency drift. The outputs
of each subband filter are squared and integrated as shown in Fig. 9. Next, if we were
to parallel the development of the Al R structure, we would take the square root of
the outputs of cach of these larger bandwidth (subband) filters, scale them, compute’
the Bessel function /,(x)of the resulting scaled envelopes and sum to obtain the test
statistic. We shall consider instead sclecting the largest subband filter output within
theith detector as thetest statistic for the corresponding ith hypothesis, analogous
to what is done in the M1.R structure.

For the system parameters of interest the subband squaring recciver achieves
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a dramatic performance improvement over the full band squaring receiver
primarily due to the reduced noise power inthe subbands (cach has only 1 /K of the
total noisc power)degraded somewhat by occasional crrorsinselecting the correct
subband. Assuming a valuc of K =40, an illustration of this performance
improvement is superimposed on the full band squaring receiver results in Fig. 7.
The curve labeled K= 1 near the subband performance curves represents the
performance of a full-band receiver with uncertainty bandwidth B= 50117, and is
usedto illustrate thesmallamount of degradation ducto choosing among 40
subbands. Note thatthe additional degradationcaused by choosing betweenfive
hypotheses instead of two is negligibly small for this case. Thesubband performance
curves were computed using (4 O) and (43) (to be derivedshortly), and the two-
hypothesis case (M = 2) was verified using a computer simulation. Comparing
these results with those obtained for the full band receiver, we observe a dramatic
improvementin performance which is on theorderof 7 dB. The analysis usedto
obtain theseresults assumes that the tones start at the boundary between subbands
and drift (at no greater rate than their maximum rate) to the boundary of the
adjacent subband in either the positive or negative direction from their starting
points) As such,thereccived tone remains Within a givensubband over the entire
observation interval. The details of the analysis arc as follows.

The detection performance of thesubband squaring receiver is obtained using
a Gaussian approximation analogous to that employed for the full band squaring
receiver. in particular, since each of the Ksubband processors in Fig. 9 is
implemented as inIig. 6b but with low pass rectangular filters that are 1 /Kththe

bandwidth, thenthe processor outputsY, G/ K47, k= 12.. .,K can bc modeled

as independent Gaussian random variables with means and variances of Z,, as in
(25) but with G replaced by G/K. Assuming first the two hypothesis case, the
probability of falsc alarm, £,,,is cqualto the probability that any of the K subband
processor outputs exceeds the threshold under /. Yquivalently, 7, is equal to one
minus the probability that none of the subband processor outputs exceed the
threshold under #,, which is the same as one minus the probability that the
maximum of the subband processor outputs docs not exceed the threshold under
#, . Thus, analogous to (26),

K

bl . ] | )
Pra=1-Pefy <yt )= 1- |0 e 52 o | (36)
- i,

where ¥ = ¥ - G/K and from the above discussion
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The missed detection probability, £, is the probability that the maximum of the
subband processor outputs does not exceed the threshold under /,, which from the

(37)

0y

above is equivalent to the the probability that none of the subband processor outputs
exceed the threshold under /1, Thus, the correct detection probability, £, = 1- £, is
given by
P, = 1= pe{y, <yjin}
S K-

1 }’" - ‘:/“u ] Y" ) Z‘u (38)
= 1-11- —erfe - ! 1- = erfl - 0
2 \/20,|”‘ 2 V20,

7,

where now

o (rrYer oG
A L)
0 0
(rr)2rr G
OZLI,‘ N NN
0 0

Nole that (38) differs in form from (27) since here a correct detection occurs if any of
the subband processor outputs exceeds the threshold, not necessarily only the one
that contains the signal. In detecting among many hypotheses as in (27), a correct
detection only occurs if the particular full band processor output that contains the
signal exceeds the threshold. Eliminating the threshold between (36) and (38) and
making usc of the moments in (37) and (39) gives the two hypothesis ROC as

(39)

]’p = 1- [] - P ](l\ /K
" PT/N
1 [ (‘/K L P _ ( P I’« )UK] TNy j}]
x| 1- - erfe |- - erfe |2} FA ;
{ 2 ¢ t\[zp'['/NO_* /K ( [ ) —\/2(1/](

(40)
ForK: 1, i.e., the full band squaring recciver, (40) reduces to (29) as ii should.

For the M hypothesis case, the probability of false’ alarm, £, is given by

K(M-1)

P = 1- T Y, Y, < I K
B T L e L i B N 1)
’ Zlu,

where 7”0 and O,IH are as defined in (37). Similar to (27), the probability of
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detection, P, is given by

Pz Pr{Y >yl Y Y LYY, <Y,

1) (4)
which, by eliminating the threshold, can be shown to be evaluated in terms of £, as

o G/K GIK PTIN, Y
n\2PT/Ny+ G/K I 2PT [N+ GIK J2G 1K

1 L K(M-2)4K-1
x[] - écrfc)’J dady

K-1 , 1 G/K PTIN
25T Cexpl- v W1 Derted - Ry 20 e 43
| Jn J,, txp{ }[ 5 o ({\/2],7,/1\/0 4 (}/K( 26 /K jH (43)

l S K(M-2)+K-2
x[l- b-crl‘cYJ ay

nfcrfc’l{fl[l' (1- I’,,A)'Kmlt»l) 1}
L .
ForK = 1, ie., the full band SquarinLg receiver, (43) reducesto (28a) as it should.

A further improvement in performance can be obtained by designing a
receiver that attempts to remove thelinear drift component of thereceived signal,
thus enabling one to significantly reduce the size of the frequency subbands. This
process, which shall bereferredto as drift matching constitutes replacing the
correlating signalsinlig.9 with ones that also contain test values of the lincar drift
distributed overtherange corresponding toits maximum positive and negative
values. The resulting drift-matching squaringreceiver ill ustrated in Fig. 10 can now be
motivated from the Al.R with frequency drift (sceldig. 8) justas the subband
squaring receiver was motivated by the structure of the Al .R without drift (see Fig.
?). Thekeyidea here is to select channel bandwidths, i.c., the value of Kin the
inputlow pass rectangular filters, wide cnoughto encompass the signal after a
lincar drift component has been removed. Thus, the minimum channel bandwidth
is ultimately determined by theresidual quadratic and higher order terms in the
frequency trajectory. In contrast to Fig.9, the subband no longer need include the
frequency variation COI‘I'(‘SpOndingl()lh(‘ maximum lincar frequency drift over the
observation interval. Thisreceiver structure is quite similar to the maximum-
likelihood estimator of {requency and frequency rate described carlierin [7].

“1’0 obtain the ROC of Fig. 10, we proceed as follows. 1.etting ] denote the
number of test values of f pertest value of f,then the false alarm and detection
probabilities are given by (36) and (38) respectively with K replaced by K]. The
moments of the decision variables under the noise only and signal plus noise
hypotheses are still given by (37) and (39), respectively, keeping in mind, however,
that the value of K to be used in these equations is significantly larger than that
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previously used for the subband receiver of Tig. 9. Finally, climinating the
unknown detection threshold between (36) and (38) results in the following ROC for
the two hypothesis case:

])I) - 1_ [1 _ ])I:A](KJ»I)/I\'J

VoL Gkl v e PTG

| T Woerringa ¢

Vor J= 1, (44) reducesto (40) asitshould.

1:orthe M h ypothesis case, the probability of false alarm is once again given
by (41) with Kreplaced by KJandthe probability of detection is still given by (42).
Eliminating the threshold between the two probabilities gives an ROC analogous to
(43), namely,

ol GIK GIK o PTIN, Y
Py - PO o J expe- | e s e Y e
R 2PT N4 G /K 2PT /N, + G/ K 2G /K
]

KI(M-2)+K/7- 1

1- - crl"c)’J dY
2

Ki- 1 P GIK ( 1’7'/N0) )
- xpi- Y2 1- - erfe |- I y- - 2L (L1 (45)
et }[1 2" ‘[\/2/'7’//\/04 G/K V2G 1K

] - KJI(M-2)4 K/J-2
x{l— écrfc)’J dy

1
1]:A crfc"{z[l- (1 - Py, K106 ]}

The performance of the recciver inIig. 10 as described by (44) and (45) is
superimposed on the results of Fig. 7. Values of (K,J) corresponding to (500, 25),
(1000, 50) and (2000, 1 00) were assumed 10 characterize the performance of the drift-
matching subband squaring receiver. Difficultiesin computing the large number of
test statistics required for this structure prevented verification by means of computer
simulations. Note that] is determined from the maximum total (positive and

X

negative) drift 87", the maximumtotal (positive and negative) frequency
uncertainty B, and K by J=2KBT [ where we have assumed that the subbands of
width 1i/K within thetotaldrift 7 overlap by B/2k. Comparing these results
with those obtained for the subband receiver of Fig. 9, we sce another dramatic
improvement in performance. As before, performance for M = 5 (four signals) is
only slightly worse than for M =2 (the single tone case).
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